Matter-wave interferometry: towards antimatter interferometers
نویسندگان
چکیده
منابع مشابه
Dephasing in matter-wave interferometry
We review different attempts to show the decoherence process in doubleslit-like experiments both for charged particles (electrons) and neutral particles with permanent dipole moments. Interference is studied when electrons or atomic systems are coupled to classical or quantum electromagnetic fields. The interaction between the particles and time-dependent fields induces a time-varying Aharonov ...
متن کاملAntimatter interferometry for gravity measurements.
We describe a light-pulse atom interferometer that is suitable for any species of atom and even for electrons and protons as well as their antiparticles, in particular, for testing the Einstein equivalence principle with antihydrogen. The design obviates the need for resonant lasers through far-off resonant Bragg beam splitters and makes efficient use of scarce atoms by magnetic confinement and...
متن کاملUltimate decoherence border for matter-wave interferometry.
Stochastic backgrounds of gravitational waves are intrinsic fluctuations of spacetime which lead to an unavoidable decoherence mechanism. This mechanism manifests itself as a degradation of the contrast of quantum interferences. It defines an ultimate decoherence border for matter-wave interferometry using larger and larger molecules. We give a quantitative characterization of this border in te...
متن کاملSagnac interferometry using bright matter-wave solitons.
We use an effective one-dimensional Gross-Pitaevskii equation to study bright matter-wave solitons held in a tightly confining toroidal trapping potential, in a rotating frame of reference, as they are split and recombined on narrow barrier potentials. In particular, we present an analytical and numerical analysis of the phase evolution of the solitons and delimit a velocity regime in which sol...
متن کاملPhotofragmentation beam splitters for matter-wave interferometry.
Extending the range of quantum interferometry to a wider class of composite nanoparticles requires new tools to diffract matter waves. Recently, pulsed photoionization light gratings have demonstrated their suitability for high mass matter-wave physics. Here, we extend quantum interference experiments to a new class of particles by introducing photofragmentation beam splitters into time-domain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics B: Atomic, Molecular and Optical Physics
سال: 2015
ISSN: 0953-4075,1361-6455
DOI: 10.1088/0953-4075/48/19/195002